Skip to content

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.


This week in PLOS Biology

In PLOS Biology this week you can read about metabolome evolution, protein flexibility and interactions between proteases and their inhibitors.

Image Credit: journal.pone.0041044.g001
Image Credit: journal.pone.0041044.g001

In their new research paper, Katarzyna Bozek, Philipp Khaitovich and colleagues analysed thousands of metabolites from brain, kidney and muscle tissue of humans, chimps and monkeys. They found accelerated evolution of metabolites not only in the human brain – which might be expected – but also human muscle metabolomes. The physiological impact of the surprisingly rapid evolution of human muscle remains unclear, although the authors did do a follow up study testing strength in humans and non-human primates and found human strength was barely half that of primates. Read more in the accompanying synopsis.


Image credit: pbio.1001870

Proteins often interact with other proteins and assemble into complexes.  Joseph Marsh and Sarah Teichmann computationally assessed the structural flexibility of thousands of proteins in their research article, and found that the flexibility of individual proteins aids their evolutionary recruitment into complexes with increasing numbers of distinct subunits. This flexibility becomes increasingly important as a greater number of proteins are packed together within a single complex.


Image credit: pbio.1001869

Proteases (enzymes that break down other proteins) are an important target for drug development, as deregulated protease activity is a common characteristic of many diseases. However we have incomplete understanding of their biology due in part to their complex functions: some activate other proteases whereas some inactivate inhibitors. Network modelling of interactions between proteases and their inhibitors, carried out by Nikolaus Fortelny, Christopher Overall and colleagues reveals a network of new protein connections and cascades in the protease web. They also tested some of the predicted effects in mice.

Leave a Reply

Your email address will not be published. Required fields are marked *

Add your ORCID here. (e.g. 0000-0002-7299-680X)

Back to top